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1  INTRODUCTION 
Many government agencies and private consulting companies must deal with the issue of 
pavement maintenance. The ability to maintain an in-service pavement structure in 
acceptable condition from structural and functional points of view is related to many 
factors which are often not explicit and change with time. Although the maintenance 
strategy may also depend on human experience, data interpretation and agency policies, it 
is largely founded on the implementation of a pavement management system (PMS). 
 
A PMS is established on the complete inventory of the pavement network and includes 
basic pavement information such as section type (i.e., layer thickness, type of subbase 
and subgrade, etc.), location, size, number of traffic lanes, route designations, functional 
classification and section conditions (i.e., type of distresses, roughness, deflections). In 
addition, this system incorporates tools and methods to facilitate agencies in the decision-
making process to maintain pavements in serviceable and functional conditions 
throughout their lives.  
 
A tool capable of accurately describing pavement condition represents an important asset 
for agencies for planning at the network level. Network level planning takes into the 
account agency’s short and long term budget needs to identify and prioritize potential 
projects. Pavement condition evaluation is one of the most important and difficult 
processes in pavement management and is strictly connected to the rating of the 
distresses affecting the infrastructure.  Added complexity is found in the variety of 
measurement procedures employed to establish distress levels on pavement structures.  
 
A pavement evaluation program focuses on collecting pavement condition data to 
determine the current conditions of the road network. Typically, a pavement evaluation 
program includes agency- or contracted-manual, semi-automated or automated surveys to 
assess the type, severity and extent of the deterioration occurring at the pavement surface. 
These surveys may follow the Distress Identification Manual for the Long-Term 
Pavement Performance Program (FHWA 2003) that was developed by the National 
Research Council Strategic Highway Research Program (SHRP) in 1999 and later 
updated in 2003. This distress manual classifies the signs of pavement deterioration into 
several types of distresses based on specific visual characteristics.  
 
Although manual and semi-automated distress evaluations are done according to well-
defined guidelines or criteria, a certain amount of subjectivity and the experience of the 
raters are expected to have an influence on the ratings. In addition, differences in the 
distress evaluation of two raters may occur due to a difference in the appearance of the 
pavement surface depending on the direction and angle of the sunlight, pavement 
temperature and moisture and the direction from which the raters view the pavement 
surface (Smith et al. 1996). The subjectivity of the distress measurements affects the final 
assessment of the pavement condition. 
 
As examples of differences between automated and manually-collected distress 
measurements, consider the data presented in Figures 1.1 through 1.3 studied in a 
previous investigation (Timm and McQueen, 2004).  The manually-collected data were 
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obtained by Alabama Department of Transportation (ALDOT) personnel while the 
automated data were generated by an external vendor (Timm and McQueen, 2004).  
Figure 1.1 shows that the automated rut depth measurements were, on average, 0.18 
inches greater than those collected manually with a large degree of scatter contributing to 
a relatively low R2 value when the manual measurements are used to estimate the 
automated counterpart data.  Figure 1.2 shows very little correlation between manually 
and automatically-collected fatigue cracking data (R2<0.03) with much more cracking 
measured manually than automatically.  Finally, Figure 3 shows relatively good 
agreement between roughness measurements as quantified by the international roughness 
index (IRI), though the scatter yields an R2 equal to 0.64.  It should be noted that the data 
sets in Figure 1.3 were both collected automatically.  The “Automated” data were 
collected by Roadware while the “Manual” data were collected by an ALDOT profiler. 

 
FIGURE 1.1  Automated vs. Manual Rut Depths (inches) (Timm and McQueen, 
2004). 
 



3 
 

  
FIGURE 1.2  Automated vs. Manual Automated Alligator Cracking (ft2) (Timm and 
McQueen, 2004). 

 
FIGURE 1.3  Automated vs. ALDOT (manual) IRI (Timm and McQueen, 2004). 
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The data sets shown in Figures 1.1 through 1.3 are certainly not unique to Alabama but 
are rather symptomatic of differences in data collection and analysis methods.  As 
another example, consider Table 1.1 which shows the Pennsylvania DOT (PENNDOT) 
acceptable tolerance levels for their automatically-collected distress data.  PENNDOT 
contracts out their automated data collection but performs routine quality assurance, 
using a PENNDOT automated test vehicle, on 5% of the data with the acceptable 
tolerance levels listed in Table 1.1.  PENNDOT allows up to 5% of the vendor IRI data to 
exceed ±25% of their own measurements.  They allow up to 10% of the other distresses 
to exceed either ±20% or ±30%, depending on the distress type.  Clearly, a low degree of 
precision is expected when dealing with multiple distress measurements over the same 
segments of roadway. 
 
TABLE 1.1  PENNDOT’s Tolerances for Discrepancies in Data (Timm and 
McQueen, 2004) 

  
  
Regardless of how the data are collected, many agencies develop a composite index 
based upon distress measurements for pavement management purposes (e.g., WSDOT, 
1999; GDOT, 1996).  Sometimes called a pavement condition rating (PCR) or pavement 
index (PI), these indices are often used to prioritize roadway segments for maintenance 
and rehabilitation.  The subjectivity inherent in assessing pavement condition means that 
previously-developed equations must be reassessed whenever the measurement system 
changes.  This reality is regardless of whether the system is manual or automated.  In 
fact, even when switching between similar automated systems, there are likely to be 
changes in measured pavement distresses that would necessitate changes in the pavement 
condition rating. 
 
One such equation, employed by the Alabama Department of Transportation (ALDOT), 
includes a variety of pavement performance parameters.  The equation, shown below, 
was developed at the University of Alabama and was based upon expert opinion and 
manually-collected data (Turner et al., 1985): 
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PCR = 95.5727 - 5.5085 (5.0-ROUGH) - 1.5964 LNALL1 (1.1) 
    - 1.9629 LNALL2 - 2.9795 LNALL3 - .01630 PAT2RD 
    - .07262 BLK2RD - .2220 AVGOUT - 3.4948 RAVL31                                                                                
    - 7.5269 RAVL32 - 11.2297 RAVL33 - .03032 LONG12 
    - .05484 LONG34 - .53050 TRAN12 - .69736 TRAN34 
 
where: 
PCR          = pavement condition rating 
ROUGH   = roughness or present serviceability index (0-5) 
LNALL1  = ln (level 1 alligator cracking + 1.0) 
LNALL2  = ln (level 2 alligator cracking + 1.0) 
LNALL3  = ln (level 3 alligator cracking + 1.0) 
PAT2RD  = patching (level 2 + level 3), ≤ 400 ft2 
BLK2RD  = block cracking (all levels summed), ≤ 400 ft2 

AVGOUT = outer wheel path rutting (all locations averaged), 10-2 inches 
RAVL31   = severe localized raveling (Code: 0 = none, 1 = present) 
RAVL32   = severe wheel path raveling (Code: 0 = none, 1 = present) 
RAVL33   = severe entire lane raveling (Code: 0 = none, 1 = present) 
LONG12   = longitudinal cracking (level 1 + level 2), ft 
LONG34   = longitudinal cracking (level 3 + level 4), ft 
TRAN12   = transverse cracking (level 1 + level 2), number of cracks 
TRAN34   = transverse cracking (level 3 + level 4), number of cracks 
 
A previous study conducted at Auburn University examined manually-collected data 
versus automated data to determine their relative impact on computed pavement 
condition ratings (Timm and McQueen, 2004).  The study determined that automated and 
manually-collected data sets were fundamentally different and therefore resulted in 
different pavement condition scores using the above equation.  Though the study pointed 
out the differences and the need to improve the correlation between manual and 
automated data, it did not suggest developing a new equation. A subsequent study at the 
University of Alabama and discussions with ALDOT pavement management engineers 
have brought to light the need to revise this equation to lead to an effective pavement 
management system. 
 
The fact that the data sets do not agree to an acceptable degree is a difficult, if not 
impossible, problem to resolve.  Improvements in automated technology may help in the 
future, but differences in ratings made by individual raters highlight the challenge of 
objectively quantifying some forms of pavement distress and the overall pavement 
condition.  Therefore, the focus should be on generating consistent pavement condition 
ratings rather than the distresses leading to those ratings.  The benefit of this approach 
overcomes reliance on a particular technology but still results in pavement condition 
ratings consistent with the “ground-truth.”  Two such approaches, described below and 
used in this investigation, are the application of artificial neural networks and re-
calibration of the original PCR equation. 
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The application of the artificial neural network (ANN) approach in the field of pavement 
management presented encouraging results and suggested further research ideas over 
these new methodologies. The literature reports many studies on ANNs specifically 
applied to pavement performance and structural assessment (e.g., Eldin and Senouci, 
1995; Roberts and Attoh-Okine, 1998; Saltan et al., 2002; Loizos and Karlaftis, 2006).  
ANNs represent an excellent tool for dealing with the complexity of the pavement 
structure and the non-linearity of the measured data. Expressing a complex system 
through neural networks proved to overcome the limitations of classical modeling 
techniques such as finite element or statistical methods. ANNs are characterized by their 
extreme flexibility and adaptability to the system and to the information available in 
describing it.   Thus, it may be possible to train an ANN to overcome the discrepancies 
between different pavement distress measurement techniques to arrive at comparable 
pavement condition ratings. 
 
Another approach to handling discrepancies in the measured data is to simply re-calibrate 
the existing PCR equation.  Theoretically, this could be accomplished using existing 
ALDOT pavement management data sets collected through manual and automated 
means.  The goal of this recalibration would be to arrive at the same pavement condition 
rating using both sets of data.  The original ALDOT equation presented above would be 
used to establish the “ground-truth” PCR value for individual segments in the 
recalibration exercise.  Data collected through automated means, on the same segments, 
would be used as inputs to recalibrate the original equation to generate a new equation 
having new calibration coefficients.  This would be accomplished through non-linear 
least-squares regression. 
 
In either case, there is a clear need for a method of updating PCR predictions that 
accounts for differences in measured pavement distresses.  The method should rely upon 
a known “ground-truth” set of measurements to provide calibration or training points for 
the new model.  This will allow ALDOT pavement managers to have consistently 
generated pavement condition ratings from which to quantify current condition and 
predict future pavement performance. 
 
2  OBJECTIVE 
Given the background information and needs described above, the primary objective of 
this research was to develop a methodology for updating ALDOT pavement condition 
ratings to reflect past experience in pavement management using new means of distress 
data collection. 
 
3  SCOPE OF WORK 
This research explored two main approaches.  The first was to develop ANNs while the 
second was to recalibrate the existing ALDOT PCR model through regression analysis.  
The ANN training and PCR recalibration relied on a sample of pavement performance 
data collected statewide in 2009 and 2010 through automated means paired to manually-
collected ALDOT “ground-truth” distress measurements.  Further evaluation was 
conducted using all automated data collected in ALDOT 2nd Division in 2009.  Finally, 
independent validation of the revised model was conducted using automated and 
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manually-collected distress measurements collected in 2011 from 10 quality control 
segments identified by ALDOT. 
 
4  DEVELOPMENT OF REVISED MODEL 
The development of the revised PCR model was divided into two main approaches.  The 
first was accomplished through ANN modeling while the second was to perform non-
linear least-squares regression.  ANN modeling, generally-speaking, can be very 
powerful in that the model simply recognizes patterns in the data and “learns” how to 
make predictions based on past experience.  The disadvantage of ANN modeling, 
however, is that ANN models tend to be complicated black boxes that do not provide a 
fundamental understanding of the relative influence of the various input parameters on 
the output predictions.  ANN models also require relatively large amounts of training data 
to arrive at stable solutions as will be demonstrated below. 
 
Alternatively, statistically-based regression models are generally well-understood and the 
relative influence and importance of the input parameters can be easily ascertained and 
quantified statistically.  However, they may suffer from over simplicity and may lack the 
ability to capture all the trends between inputs and outputs. 
 
Regardless of the method of model development, the effectiveness can be generally 
judged by how well each is able to match its PCR predictions to the “ground-truth” PCR.  
As will be described in the following subsections, there are a number of statistical and 
practical means of judging how well distress measurements and PCR predictions made 
through automated means match the ground-truth measurements and PCRs. 
 
4.1  Revised Model Data Set 
The data used for model revision was collected in 2009 and 2010.  Table 4.1 lists the year 
of collection, the ALDOT route designation and the beginning and ending milepoints for 
each segment.  The ground-truth data were collected manually by the ALDOT Pavement 
Management Division within the Bureau of Materials and Tests.  The automated data 
were collected through Pathway, a vendor providing statewide distress data to ALDOT.  
The data were compiled on a 0.01 mile basis and the number of paired data points for 
each segment is shown in Table 4.1.  For this investigation, there were 570 total paired 
data points. 
 
On each segment in Table 4.1, the pavement distress data listed in Table 4.2 were 
collected.  It should be noted that the International Roughness Index (IRI) and rut depths 
were only measured by Pathway and were taken as ground-truth measurements in this 
investigation.  Past studies had shown generally good agreement between manual and 
automated measurements for these distresses (Timm and McQueen, 2004), so they were 
deemed acceptable as ground-truth measurements.  The ALDOT-measured cracking was 
determined through walking surveys on-site while the Pathway cracking measurements 
were made off-site from high resolution images of the pavement surface using their 
normal image processing procedures. 
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TABLE 4.1  Revised Model Data Set 
YEAR Route Starting Milepoint Ending Milepoint Paired Data Points 

2009 

AL0003 209 209.29 30 
AL0008 70.71 71 30 
AL0014 191 191.29 30 
AL0021 166 166.29 30 

AL0022
4 4.29 30 
37 37.29 30 

AL0053
90 90.29 30 
95 95.29 30 

AL0063
2 2.29 30 
6 6.29 30 

AL0110 10 10.29 30 
AL0271 1 1.29 30 

2010 

AL0001
120 120.29 30 

120.71 121 30 
AL0022 130 130.29 30 
AL0077 35 35.29 30 
AL0148 18 18.29 30 
AL0169 12 12.29 30 
AL0259 2 2.29 30 

Total 570 
 
TABLE 4.2  Manual and Automated Distress Measurements 

Measurement Manual-ALDOT Automated-Pathway 
Low severity transverse cracking  

Medium severity transverse cracking  
High severity transverse cracking  
Low severity wheelpath cracking  

Medium severity wheelpath cracking  
High severity wheelpath cracking  

Low severity nonwheelpath cracking  
Medium severity nonwheelpath cracking  

High severity nonwheelpath cracking  
Outside wheelpath rutting    
Inside wheelpath rutting    
Outside wheelpath IRI    
Inside wheelpath IRI    

 
4.2  Comparison of Manual and Automated Data Sets 
Prior to developing a new ANN or recalibrating the ALDOT PCR equation, the cracking 
data set collected by ALDOT and Pathway were compared to identify potential 
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discrepancies between the data sets.  The comparisons were grouped according to types 
of cracking (i.e., transverse cracking, wheelpath cracking and non-wheelpath cracking). 
 
Figure 4.1 illustrates the transverse cracking comparison.  Visual inspection clearly 
shows large discrepancies between the two sources of data and very little, if any 
correlation.  Paired t-testing (=0.05) was conducted for each transverse cracking 
severity level from which the Pearson correlation coefficient (r) and two-tailed p-value 
was determined.  Table 4.3 summarizes the t-test results.  The low and moderate severity 
cracking clearly have poor Pearson correlation (r<0.57) and are statistically different (p < 
0.025).  The high severity cracking was somewhat a special case.  Zero transverse 
cracking was reported for every segment in the automated data set while there were two 
manual non-zero readings.  The result from t-testing these data sets was an undefined 
Pearson correlation coefficient, but the p-value indicates a lack of a statistically 
significant difference between the data sets.  This is a non-sensical result and it can be 
generally stated that the transverse cracking readings had generally poor agreement. 
 

 
FIGURE 4.1  Transverse Cracking Comparison. 
 
TABLE 4.3  Transverse Cracking Paired t-Test Summary 
Transverse Cracking Severity Pearson Correlation Coefficient (r) Two-tailed p-value 

Low 0.568 0.018 
Medium 0.277 1.809E-9 

High Undefined 0.168 
 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

T
ra

ns
ve

rs
e 

C
ra

ck
in

g
, f

t (
A

ut
o

m
at

e
d 

P
at

hw
a

y)

Transverse Cracking, ft (ALDOT Manual Collection)

Low Severity

Medium Severity

High Severity



10 
 

Figure 4.2 shows the wheelpath cracking comparison.  Wheelpath cracking can also be 
called alligator or fatigue cracking and is sometimes reported as an area.  For consistency, 
the automated and manual data were both collected and reported as lineal feet of cracking 
over  1/100 mile or 52.8 ft.    Therefore, the maximum possible value was 52.8 ft with 
many segments having this value. 
 
Visual inspection of Figure 4.2 clearly shows very poor correlation of the data sets.  
Paired t-testing (=0.05) was executed for each wheelpath cracking severity level from 
which the Pearson correlation coefficient and two-tailed p-value was determined.  Table 
4.4 summarizes the t-test results.  All cracking levels had very low correlation (r < 0.26) 
and were statistically different.  What is perhaps most striking is the large number of 
instances in Figure 4.2 where large amounts of cracking was reported by one method but 
not the other, as evidences by the high degree of scatter in that data and proportion of 
data points that fall on one of the four boundary axes of the chart.  This clearly would 
pose a problem for future model development. 
 

 
FIGURE 4.2  Wheelpath Cracking Comparison. 
 
TABLE 4.4  Wheelpath Cracking Paired t-Test Summary 
Transverse Cracking Severity Pearson Correlation Coefficient Two-tailed p-value 

Low 0.248 1.942E-39 
Medium 0.250 6.923E-4 

High 0.102 1.400E-4 
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The last comparison was made upon the non-wheelpath cracking.  Measured in a similar 
manner to the wheelpath cracking, it was again reported in terms of lineal feet per 52.8 ft 
segment.  Figure 4.3 shows generally poor agreement between automated and manual 
data sets.  Table 4.5 summarizes the paired t-testing with low Pearson correlation 
coefficients and very low p-values indicating large differences between these data sets.  
The high severity cracking again had the problem of many pairs with zero cracking 
reported and a few manually-reported cracking that yielded an undefined Pearson 
coefficient. 
 

 
FIGURE 4.3  Non-Wheelpath Cracking Comparison. 
 
TABLE 4.5  Non-Wheelpath Cracking Paired t-Test Summary 

Non-Wheelpath 
Cracking Severity 

Pearson Correlation Coefficient Two-tailed p-value 

Low 0.241 2.236E-15 
Medium 0.391 2.072E-4 

High Undefined 1.049E-3 
 
The three data sets presented above showed generally poor correlations between the two 
methods of data collection.  While this finding is important from a data collection 
standpoint, the larger question was how much these discrepancies would affect 
predictions of pavement condition rating through neural network modeling and regression 
analysis as explored in the following sections. 
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4.3  Artificial Neural Network Modeling 
ANN modeling relies upon building a model from known data by recognizing patterns in 
the data.  More technically, as described by Leiva-Villacorta (2012), ANNs consist of a 
number of very simple and highly interconnected processors called neurons, which are 
the analogs of biological neurons in the brain.  The neurons are connected by a large 
number of weighted links, over which signals can pass.  Figure 4.4 illustrates the concept 
of a neural network where the input layer includes the measured data such as IRI, rutting 
and cracking.  The output layer represents the pavement condition rating.  In between are 
the so-called hidden layers comprised of neurons that connect the input and output layers.

 
FIGURE 4.4  Artificial Neural Network Schematic (BW Mining, 2013).   
 
ANNs rely upon a training process using known data sets.  Typically, the process 
includes using a large percentage of the known data set for actual training and smaller 
proportions for validation and testing.  For this investigation, the training was conducted 
in MATLAB and 70% of the data were used for training while 15% were used for 
validation and 15% for testing.  MATLAB randomly selected the data for each subset 
(training, validation and testing) from the 570 records described in Section 4.1. 
 
To develop the ANN data set, PCRs were computed for the 570 records using a modified 
version of the original ALDOT PCR equation (equation 1.1) where patching (PAT2RD), 
block cracking (BLK2RD) and raveling (RAVL31, RAVL32 and RAVL33) had been 
removed at the direction of ALDOT.  Rating the patching severity is highly subjective 
and depends heavily on the method of collection (walking survey vs. downward-fired 
imaging and post-processing).  Therefore, the vendor was only asked to report the 
presence of patching (not severity level) and it  was removed from the equation.  
Furthermore, the automated system reported non-wheelpath cracking which could 
technically include longitudinal cracking and block cracking.  Since block cracking is 
more rarely observed on state routes than longitudinal cracking,  ALDOT decided that the 
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better option for network-level data was to assume that the non-wheelpath cracking was 
longitudinal rather than block cracking.  For this reason, block cracking was removed 
from the equation. Finally, in the original equation, raveling required classification 
according to severity level.  However, raveling severity is also highly subjective and the 
vendor was asked to only report high severity raveling.  Therefore, raveling was also 
removed from the equation.  The modified equation was: 
  
PCR = 95.5727 – 5.5085 (5.0-ROUGH) – 1.5964*LNALL1 (4.1) 
     – 1.9629*LNALL2 – 2.9795*LNALL3 – 0.2220 AVGOUT  

– .03032*LONG12 – .05484*LONG34 – 0.53050*TRAN12 – .69736*TRAN34 
 
The roughness term (ROUGH) in equation 4.1 was computed from the measured IRI 
according to an equation previously developed by ALDOT (Holman, 1995): 
 
ROUGH = 5e-0.0051118*IRI-0.0016027 (4.2) 
 
where:   
ROUGH = roughness or present serviceability index (0-5) 
IRI = international roughness index, in./mile 
 
Equations 4.1 and 4.2 were used with the ALDOT-measured data to determine a PCR for 
each of the 570 records.  These ground-truth PCR values were used as the output layer 
for training the ANN.  The input layer utilized the Pathway-measured data and the ANN 
was trained to map the Pathway inputs onto the ground-truth PCR values. 
 
Once all the data had been organized and loaded into MATLAB, it was a relatively 
simple matter to run the training algorithm.  Multiple training cycles were executed to 
evaluate whether consistent results were achievable.  Table 4.6 and Figures 4.4 through 
4.6 illustrate the results of three training cycles output from MATLAB.  Each figure is 
comprised of four plots with common elements.  The top-left plot shows the training data 
set with the Pathway-computed PCR on the y-axis and the ALDOT PCR on the x-axis.  
Ideally, the data should cluster along the dashed line of equality (Y=T).  MATLAB also 
graphs a best-fit (Fit) solid linear trendline as an indication of the departure from 
equality.  The y-axis label expresses the best-fit parameters where “Output” is the 
Pathway PCR and “Target” is the ALDOT PCR with the corresponding slope and 
intercept.  The correlation coefficient between the data sets (R) is shown above each plot. 
Again, under ideal conditions, the slope should approach 1 while the intercept approaches 
zero and the correlation coefficient approach 1.  The remaining plots in each figure 
represent the validation (top-right), testing (bottom-left) and all (bottom right) data, 
respectively. 
 
Visual inspection of Figures 4.4 through 4.6 generally show poor results with a great deal 
of scatter.  No ALDOT PCRs were computed below 11.3 while the ANN model, in an 
effort to provide acceptable matches to the ALDOT data, computed PCRs down to zero.  
This explains the large amount of data stacked vertically at 11.3 on the x-axes. 
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Table 4.6 summarizes the results of the ANN training.  It is clear from the table that the 
training was non-unique in that various results were achieved for each training cycle 
depending upon on how the data were randomly drawn for each subset.  The intercept 
ranged from 8.4 to 20 while the slope varied between 0.51 to 0.68.  Table 4.6 also 
contains the R2 for each linear trendline computed from the reported correlation 
coefficient which ranged from 0.36 to 0.63.  While one could argue that an R2 of 0.62 
indicated reasonable accuracy, the other lower values were deemed unacceptable.  In 
terms of predicting PCR from automated data, these results were deemed unacceptable 
and it was decided to proceed with statistical regression as described in the next section. 
 
TABLE 4.6  Summary Results of ANN Training 
Training 

Cycle 
Component Training Validation Test All 

1 
Pathway = 

0.51*ALDOT+
11 

0.52*ALDOT+
12 

0.51*ALDOT+
11 

0.52*ALDOT+
11 

R2 0.55 0.50 0.61 0.55 

2 
Pathway = 

0.68*ALDOT+
10 

0.68*ALDOT+
8.4 

0.53*ALDOT+
20 

0.65*ALDOT+
11 

R2 0.62 0.74 0.36 0.58 

3 
Pathway = 

0.61*ALDOT+
9.9 

0.53*ALDOT+
13 

0.62*ALDOT+
11 

0.60*ALDOT+
10 

R2 0.63 0.44 0.58 0.59 
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FIGURE 4.4  ANN Training Cycle One. 
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FIGURE 4.5  ANN Training Cycle Two. 
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FIGURE 4.6  ANN Training Cycle Three. 
  
4.4  Regression Modeling 
As noted in the previous section, the ANN model proved relatively inconsistent and 
highly dependent upon the random sample drawn for training purposes.  Furthermore, 
even if the model had been reliable, ANNs suffer from being black boxes that can be 
difficult to use in practice.  The alternative approach, regression modeling, does not 
suffer from these limitations and has the potential to provide improved PCR values from 
automated data.  The approach was to use the same computed PCR values from the 
ALDOT ground-truth data using equations 4.1 and 4.2.  A modified equation, having the 
same form of equation 4.1, was then calibrated through multivariable, non-linear, least 
squares regression with the automated Pathway data. 
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Prior to performing the recalibration, the existing equation (4.1) was evaluated to judge 
the current status of the ALDOT PCR equation using the automated data.  Figure 4.7 
compares the Pathway and ALDOT PCR values using equation 4.1.  The line of equality 
and lines indicating ±10 PCR points show that a large number of data points (63%) fall 
within this practical range of tolerance.  However, there does appear to be some bias in 
the data with 33.2% exceeding the +10 tolerance limit with only 3.8% below the -10 
limit. 
 

 
FIGURE 4.7  PCR Comparison Using Original PCR Equation. 
 
Multivariable non-linear least squares regression was conducted in Excel to arrive at a set 
of recalibrated regression coefficients.  The result was: 
 
PCR = 95.5727 – 10.9994*(5.0-ROUGH) – 0.3948*LNALL1 (4.3) 

– 0.8347*LNALL2 – 0.5027*LNALL3 – 0.2423*AVGOUT  
– 0.03032*LONG12 – .05484*LONG34 – 0.2916*TRAN12 – 0.69736*TRAN34 
 

Table 4.7 compares the regression coefficients from the original model (equation 4.1) to 
those of the recalibrated model (equation 4.3).  Note that a number of coefficients 
remained unchanged between the two models.  It was decided to fix the intercept 
coefficient to maintain the same starting score for both models before taking deductions 
for particular pavement distresses.  This prevented achieving scores higher than reported 
with the original equation.  The longitudinal cracking (LONG12 and LONG34) and high 
severity transverse cracking (TRAN34) were included as variable parameters in the 
regression process but were left unchanged by the regression analysis.  Inspection of the 
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coefficients indicates that the recalibrated equation puts a greater emphasis on pavement 
smoothness (ROUGH) with less (or the same) emphasis on the cracking terms.  There 
was a slight change in the rutting term (AVGOUT).  It is important to emphasize these 
changes are a function of the supplied ALDOT and Pathway data sets.  Future data sets 
may result in different coefficients and trends.  However, this procedure can be easily 
applied to newly developed data as it becomes available as demonstrated in the next 
section. 
 
TABLE 4.7  Regression Coefficient Comparison 

Coefficient Original (equation 4.1) Recalibrated (equation 4.2) 
Intercept 95.5727 
ROUGH -5.5085 -10.9994 

ALL1 -1.5964 -0.3945 
ALL2 -1.9629 -0.8347 
ALL3 -2.9795 -0.5027 

AVGOUT -0.2220 -0.2423 
LONG12 -0.03032 
LONG34 -0.05484 
TRAN12 -0.5305 -0.2916 
TRAN34 -0.69736 

 
Ultimately, it is not the coefficients, but the quality of the PCR computations that is of 
vital importance.  Figure 4.8 shows the result of the recalibration in the same format as 
the previous figure.  After recalibration, 86% of the data were within ±10 PCR points and 
the data are more centered on the line of equality than the plot comparing ANN-generated 
data with the automated data.  The data also do not suffer from the stacking seen in the 
ANN models (Figures 4.4 – 4.6). 
 

 
FIGURE 4.8  PCR Comparison Using Recalibrated PCR Equation. 
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5  FURTHER MODEL CALIBRATION 
Pavement condition data collected in 2011 were made available to further calibrate the 
PCR equation.  The data, provided by the ALDOT Pavement Management Division 
within the Bureau of Materials and Tests, were from ten quality control sites where 
ground-truth and Pathway measurements were conducted.  Table 5.1 lists the 2011 test 
sites. 
 
TABLE 5.1  2011 Test Sites 

ROUTE Starting Milepoint Ending Milepoint Paired Data Points 
AL0006 181 181.3 30 
AL0008 100 100.3 30 
AL0008 165 165.3 30 
AL0015 132 132.3 30 
AL0015 156 156.3 30 
AL0021 124 124.3 30 
AL0053 104 104.3 30 
AL0140 2 2.3 30 
AL0185 19 19.3 30 
AL0223 18 18.3 30 

Total 300 
 
 
Unlike the 2009/2010 data set, the 2011 data set included ALDOT-measured IRI and rut 
depths.  This enabled a four phase evaluation to examine the following recalibration 
scenarios: 
 
A. Replace ALDOT IRI & rutting data with Pathway data.  This was the approach taken 

with the 2009/2010 data set. 
B. No replacement of data. 
C. Replace only ALDOT IRI data with Pathway data. 
D. Replace only ALDOT rut data with Pathway data. 
 
The data for each of the four scenarios was subjected to the same multivariable least-
squares regression procedure to develop scenario-specific regression equations.  Table 
5.2 summarizes the regression terms while Figure 5.1 provides a direct comparison 
between PCRs and Figure 5.2 shows the residuals as a cumulative distribution.  It should 
be noted that the recalibration resulted in a positive coefficient for the LONG12 variable 
for each scenario.  This was likely an artifact of the regression process specific to this 
particular data set.  Since this implies that the PCR increases with an increase in 
longitudinal cracking, it was decided to fix the coefficient for LONG12 to the original 
value (-0.0303).  It is suggested that if positive coefficients are found in future 
recalibrations, they should be fixed to the original value and recalibration conducted 
again. 
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Regardless of the scenario (A, B, C or D), the results of further calibration were generally 
good.  Using the ±10 PCR points as a practical limit, the worst case scenario was when 
no data were replaced resulting in 82.6% within the ±10 point range.  As expected, the 
best case scenario (A) was where both the ALDOT and Pathway PCR were computed 
from the same rutting and IRI measurements which had 84.1% of the vendor-generated 
PCRs within ±10 of the ALDOT PCRs.  This result was similar to the recalibration 
conducted with the 2009-2010 dataset. 
 
TABLE 5.2  Regression Parameter and Accuracy Summary 

 Scenario 

Coefficient 
A-Replace IRI  

& Rut 
B-No 

Replacement 
C-Replace IRI 

Only 
D-Replace 

Rutting Only 
Intercept 95.5727 
ROUGH -9.8339 -8.6376 -9.8358 -8.6357 

ALL1 -0.5491 -0.7837 -0.6387 -0.6941 
ALL2 -1.9321 -2.0792 -2.0171 -1.9943 
ALL3 -1.9826 -1.9208 -2.0566 -1.8469 

AVGOUT -0.1678 -0.1569 -0.1218 -0.2029 
LONG12 -0.0303 (note – fixed to original value) 
LONG34 -1.9042 -1.6201 -2.3476 -1.1767 
TRAN12 -0.3668 -0.4259 -0.4007 -0.3920 
TRAN34 -0.6974 -0.6974 -0.6974 -0.6974 

%Within ±10 84.1 82.4 83.3 82.6 
%Within ±5 63.0 59.3 62.2 59.6 

 

 
FIGURE 5.1  PCR Recalibration Using 2011 Data. 
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FIGURE 5.2 PCR Cumulative Residual Distribution. 
 
Though Figures 5.1 and 5.2 do not show large practical differences between the data sets, 
regardless of the scenario, statistical testing was conducted to validate this conclusion.  
Two-tailed paired t-tests (=0.05) were conducted for each scenario to evaluate the null 
hypothesis that the mean difference between ALDOT and Pathway PCR values was zero.  
Table 5.3 summarizes the results.  The only scenario with statistically significant 
differences was B (No-replacement); though the null hypothesis was just barely rejected 
(as indicated by a p-value of 0.0355, as shown in Table 5.3).  The others were all 
statistically-equivalent.  Since past studies had shown generally good agreement between 
ALDOT and the vendor-generated IRI and rut depths, it is recommended that the vendor-
provided IRI and rut depth data be used to compute the ground-truth PCR.  This approach 
appears to provide the best correlation between ALDOT and vendor-generated PCRs by 
focusing primarily on differences between cracking measurements.  However, it is 
critical that the replacement only be done after the agency has deemed the IRI and rut 
depth data sets from the vendor acceptable using ground-truth measurements. 
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TABLE 5.3  Paired t-Test Results 
 Scenario 

Parameter 
A.2-Replace 
IRI & Rut 

B-No 
Replacement 

C-Replace IRI 
Only 

D-Replace 
Rutting Only 

Observations 300 300 300 300 
ALDOT Mean 

PCR 
67.6 68.2 67.6 68.2 

ALDOT PCR 
Variance 

120.0 117.1 120.4 115.3 

Pathway Mean 
PCR 

68.3 69.2 68.4 69.0 

Pathway PCR 
Variance 

112.3 111.5 115.7 108.1 

Pearson 
Correlation 

0.78 0.71 0.77 0.73 

p-value 0.1011 0.0355 0.0679 0.0500 
Result Accept Null Reject Null Accept Null Accept Null 

 
6  CONCLUSIONS AND RECOMMENDATIONS 
The primary objective of this research was to develop a methodology for updating 
ALDOT pavement condition ratings to reflect past experience in pavement management 
using new means of distress data collection.  Both artificial neural network modeling and 
recalibration of the original ALDOT PCR equation were conducted using data collected 
from 2009 through 2011.  Based upon this investigation, the following conclusions and 
recommendations are made: 
 
1. The ANN modeling proved unreliable using the 2009 data.  Repeated training on the 

same data set yielded variable results that were not deemed acceptable.  It is not 
recommended, at this point, to use ANN modeling for PCR prediction. 

2. Recalibration of the original ALDOT PCR model, with a few parameters removed,  
yielded acceptable results using the 2009/2010 data.  After recalibration, 86% of the 
vendor-computed PCR values were within ±10 points of the ALDOT-computed 
value. 

3. Further calibration with more recently collected data, using presumably better data 
collection and analysis equipment and techniques, yielded similar results.  84.1% of 
the data were within ±10 points.  For the purposes of prioritizing roadway segments 
for maintenance and rehabilitation, this was deemed sufficiently accurate.  
Furthermore, no statistically significant differences were detected between ALDOT 
and vendor-generated PCR scores when using common IRI or rut depth or both to 
compute the PCR value.  It is recommended that the practice of using vendor-
provided IRI and/or rut depth data continue once the vendor-provided data have been 
validated. 

4. It is recommended that ALDOT continue with their ground-truth measurements.  
These measurements are critical to check assure the quality of the vendor data and 
provide the necessary data to conduct recalibration on an as-needed basis. 
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